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A formulation of the electron momentum equation and Maxwell’s field equations suitable 
for global solution in an r-z hybrid plasma simulation code has been derived. The assumption 
of zero electron inertia is made in the electron momentum equation and Maxwell’s equations 
are used in the radiation-free or Darwin limit. These techniques make explicit use of the 
axisymmetric properties of the model to decouple the components of the model equations. 
Equations to self-consistently advance the electron temperature are not presently included in 
this scheme. The model equations which result from these considerations are two coupled, 
nonlinear, second order partial differential equations. These two equations are integrated in 
time by a noniterative AD1 procedure along with the explicit particle-in-cell ion time 
integration procedure. The resulting nearly implicit electron-field algorithm treats wide 
variations in the local signal velocity without instability; this consideration is most important 
since pure vacuum regions are allowed. The global nature of the solution requires boundary 
conditions only on the boundaries of the simulation region; arbitrary intermixing of plasma 
vacuum regions requires only the simple detection of low density cells and does not require 
monitoring of plasma vacuum interfaces. 

A plasma simulation method which can describe macroscopic phenomena while 
including particle ion effects in high-/I plasmas has considerable utility in evaluating 
magnetic fusion concepts. Of particular interest are plasma phenomena having 
gradient scale lengths comparable to ion gyroradii which are both on the order of 
centimeters and time scales on the order of a few tens of microseconds or longer. 
Examples of plasmas with such parameters abound in high-/? controlled fusion 
research with typical plasma parameters ranging between lOI and 10” particles/cm-’ 
for densities, between 1 and 7 keV for temperatures, and between 10 and 50 kG for 
magnetic fields. Multidimensional simulation of such plasmas has until recently been 
restricted to models describing only MHD behavior and therefore has not included all 
the physical effects desired. Conversely, full electron and ion particle-in-cell 
techniques provide more details about plasma behavior than are needed for 
macroscopic studies; such methods follow plasma behavior on electron time and 
length scales which, for plasmas of interest in this work, are on the order of IO-‘* set 
and 10-l’ cm, respectively-far too microscopic for practical extension to plasmas 
under consideration now. 

* Work performed under the auspices of the U. S. Department of Energy, under Contract W-7405. 
Eng. 36. The U. S. Government’s right to retain a nonexclusive royalty-free license in and to the 
copyright covering this paper, for governmental purposes, is acknowledged. 
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What is needed is a hybrid model which describes plasmas with a level of detail 
between these two extremes. Several potentially useful multidimensional models have 
recently been developed for simulation in this parameter regime. The model of 
Okuda et al. [ 1 ] assumes the electrons are always in thermodynamic equilibrium and 
thus form a Debye sheath about the equilibrium ion density. The model is quite 
successful in simulating low frequency ion oscillations and eliminates high frequency 
fluctuations. Resistive heating effects may be difficult to include since extension of 
the model to nonadiabatic electrons appears to be problem dependent. Another model 
which approaches the required parameter regime is the finite electron mass model of 
Hewett and Nielson [2]. Through separation of the electron current and electric field 
into irrotational and solenoidal components, electron plasma oscillations and the 
associated time step restrictions are eliminated from the model. Other electron inertial 
effects necessary to describe most microinstabilities requiring finite o,., are retained. 
This model, however, retains a fraction of the w,, time step constraint, depending 
upon the magnitude of B in the simulation plane, and consequently is primarily useful 
for studying microinstabilities not requiring mpe effects. The w,, constraint is still too 
restrictive (w,, = lo-‘* set-’ for typical plasmas of interest here) for microsecond 
time scales. 

A model by Byers et al. [3] appears to provide an avenue of approach to the 
desired parameter regime, Their model utilizes CIC techniques for the ion component 
coupled with a zero mass fluid model to represent the electrons. Quite complete 
linearized stability analyses were carried out for various versions of this model. 
Hewett and Sgro [4] have implemented and extended a very similar model in two- 
dimensional (r-z) geometry which has provided useful simulations of the dynamics of 
a bumpy o-pinch implosion. One source of difficulty is that these hybrid techniques 
all use the electron and field equations in a manner which requires division by the 
density in each plasma computational cell. This feature produces sensitivity to fluc- 
tuations in regions of low but finite density and will not describe regions with zero 
density. To model bumpy &pinch behavior, Hewett and Sgro made provisions for a 
separate vacuum treatment of regions in which density falls below a cutoff level. 
Ultimately, in the Hewett and Sgro version, numerical instabilities arising from 
violation of multidimensional stability constraints were encountered in the attempt to 
simulate phenomena having shorter axial wavelengths. Additionally, some difficulties 
were encountered when the regions of plasma and vacuum became highly intermixed, 
such as occurs in the dynamical stages of plasma implosions. 

In this paper, a new method of solution for the relevant combination of electron 
and radiationless field equations is proposed. Though presently implemented with a 
non-self-consistent electron temperature, this formulation appears to have greatly 
reduced the difficulties associated with low density fluctuations as well as allowing 
arbitrary plasma-vacuum intermixing without having the monitor the location of 
plasma-vacuum interfaces. Simulations for the purpose of testing field calculations 
have been made in which regions of finite plasma density are represented by only one 
or two particles per cell without introducing catastrophic instability. Obviously the 
physics described with such a minimal representation is at best questionable, but the 



380 D. W.HEWETT 

robustness required to handle stochastic plasma-vacuum boundaries is clearly 
demonstrated. The surprisingly good performance in the presence of high fluctuations 
is attributed to the nearly implicit field-electron current calculation. It is also this 
property which allows the freedom to specify boundary conditions only on the 
simulation boundaries regardless of the distribution of density within the region. 
Furthermore, the implicit form does not exhibit the numerical instability associated 
with the small grid spacing in the axial direction found in the earlier version [4 1. The 
practical time step constraint is that no ion velocity or hydromagnetic wave 
associated with the minimum finite density allowed (or density “cutoff’ value) may 
travel more than one cell in one time step. Further discussion of these properties will 
be given in the following sections, in which the model is developed, and in the 
application section, in which the first applications of the method are discussed. 

DERIVATION OF THE GLOBAL FIELD EQUATIONS 

The basic equations for advancing the electromagnetic fields in any simulation are 
of course Maxwell’s equations. However, the zero electron inertia assumption 
provides additional constraints which must be utilized to self-consistently advance the 
electron quantities, such as current J, and temperature T,, simultaneously with the 
field components. What results is a mixture of the electron momentum equation and 
Maxwell’s equations which must be advanced in time along with the ion particle 
advance. These electron-field equations are configured for this work to allow nearly 
implicit time advance of all field and electron quantities in axisymmetric cylindrical 
geometry. In the following derivation it is assumed that all ion source terms, such as 
number density p and current Ji, are available at time level t = n At from the most 
recent pass through the particle-in-cell routines as well as the field components at the 
previous time level. 

In the limit of small electron inertia, the electron momentum equation is 

E2!!!G-u,+B+J, 
eP C 

where T, and u, are the electron temperature and drift velocity, respectively. E and B 
are the electromagnetic fields, J is the total current, B is the resistivity, e is the elec- 
tronic charge, and c is the velocity of light. Quasi-neutrality is assumed in this model 
so that the electron density is nearly equal to the ion density and both will be denoted 
by the symbolp. 

An immediate consequence of quasi-neutrality is that the total current J must be 
nearly solenoidal, J z J,. The subscript t here denotes a solenoidal (transverse) vector 
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and the subscript 1 denotes an irrotational (longitudinal) vector. This result follows 
from the charge continuity equation which, in the quasi-neutral limit, is 

V J,r -V Ji. (2) 

This equation suggests the choice of equal and opposite irrotational currents 
J,, = -Ji, which is fully general as long as the boundary conditions on the currents 
are consistent with quasi-neutrality. 

To complete the set of equations governing the time advance of electron-field 
quantities, the radiation-free or Darwin limit of Ampere’s law 

V,B=$J, 

and Faraday’s law 

VXE,=-fd$ 

(3) 

(4) 

must be combined with the electron momentum equation (1). Introducing the 
magnetic vector potential A in the Coulomb gauge, Eq. (1) takes the form 

where the relation E, = --A/c has been used. Since B = V x A, Eq. (5) would provide 
an explicit method of advancing B if a convenient method of determining u, and E, 
could be found. Solving the quasi-neutral Poisson equation [2] is one possibility for 
finding E,. It is simpler, however, to exploit the axisymmetry of the model in the 
present case. In this model a/&9 E 0 so that the e-component of E, is identically zero. 
Therefore only the &component of Eq. (5), 

is solved. A, and, consequently, B, and B, are advanced in time using this equation 
with u,, and u,, coming from the curl of B,e^,p, uir, and nir. 

What remains to be found is a procedure for advancing B, in time. Equation (6) 
provides for evaluating A, in terms of Ai-’ and Bi-’ and other quantities known 
from the particle advance. What is needed is an expression for ti’e in terms of A;-’ 
and Bz-’ and known quantities. This relation can be obtained by first taking the curl 
of Eq. (1) and then replacing V X E with h from Faraday’s law equation (4). The 8 
component of the resulting equation is 



382 D. W. HEWETT 

+ 4 [uerBol + $ [u,,B,l 

=B, au,, --+ 
I 

au,, c ap aT, ap aT, 
ar 

+B,--- --_--- 
az [ ep az ar 1 ar az ’ (7) 

To complete this model, a mechanism for advancing T, which can proceed along 
with the other time integration procedures is required. Since electron phenomena are 
assumed in this model to occur on time scales much shorter than a time step in the 
code, standard techniques for advancing the electron temperature are not appropriate. 
Methods of advancing T, which correctly express, for example, the rapid thermal 
equilibration along field lines require a solution technique which expresses the idea of 
instantaneous thermal equilibration rather than temporal advance by electron 
convection. This problem requires more than a simple evaluation of aTJar, and 
several methods are now under consideration. For present purposes, it is assumed 
that T, is not advanced in a self-consistent manner. It is noted that a procedure to 
advance T, as a function of plasma and field quantities 

i;, = f@, T,, u,, 6 II) (8) 

is all that is required to lit into this numerical scheme. For the model tests presented 
later, T, is assumed to be a uniform constant 1 eV. 

Equations (6) and (7) thus comprise a set of coupled nonlinear partial-differential 
equations which can be used to advance the magnetic field in time along with the 
associated electron current. The completeness of this set is demonstrated by the fact 
that given ion source terms, the temporal behaviors of A, and B, are expressible as 
functions of only themselves. 

REGIONS OF SMALL OR ZERO DENSITY 

As mentioned previously, one of the most common difficulties with earlier codes 
with similar physics is the problem of low density fluctuations. Since Eqs. (6) and (7) 
are both formulated in terms of the electron drift velocity IQ,, the diffkulty is largely 
shifted to equations for uer which are 

U CT = Uir + 

c aB, 
47cepaz’ 
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u etJ = uie + -‘- V2A 
4nep tl’ 

c 1 3(rB,) 
uez=uiz----. 

4nep r i3r 

Pb) 

PC> 

For a cell with zero density, the equations appear to break down. No difficulity is 
encountered, however, since, if p = 0 in a cell, J, ui, and u, are also zero. Numerical 
problems do appear in cells with small but finite density. A density fluctuation 
resulting from the relatively small number of simulation particles is clearly an 
aberration which has no physical meaning considering the large absolute densities of 
even the lowest density experimental plasmas. When encountering a low density fluc- 
tuation, simulation algorithms generate a spike in the local density-dependent signal 
velocity. Typically, this velocity spike can exceed the local Courant stability limit [6] 
which causes an abrupt termination of the simulation. While an understanding of 
such phenomena is satisfying, the abrupt termination of the simulation is clearly 
unacceptable. 

One possible solution is to postulate a finite density (or cold background plasma) 
in each cell to provide a lower limit on p and thus eliminate the velocity spike. Unfor- 
tunately, a numerically significant background density in a true vacuum region 
produces an unacceptable alteration of the desired physics-particularly in the case 
of time-dependent external fields propagating nearly instantaneously across a vacuum 
region. What appears to be required is a method for distinguishing between true 
vacuum regions, perhaps just forming, and low density fluctuations. If this distinction 
could be made, the method could insert a background density in the “fluctuation” 
cells and treat separately the true vacuum regions. A sufficiently clever algorithm 
would be hard to describe. Additionally, if the model treats plasma and vacuum 
regions separately, a time-explicit algorithm must monitor, if not store, the location of 
plasma-vacuum interfaces. For a highly turbulent situation such as one might 
encounter in a plasma gun, for example, monitoring the plasma-vacuum interfaces 
becomes quite complicated and time consuming, if not impossible. 

The conclusion that emerges is that it is highly desirable to consider techniques 
which can handle the disparity in signal velocities in adjacent cells and not require 
the algorithm to define separate plasma and vacuum regions. Such difficulties are 
frequently encountered in other areas of numerical simulation and are commonly 
overcome by treating the time advance of the offending equations implicitly [6]. This 
numerical technique allows unwanted high frequency phenomena to decay exponen- 
tially with time. These implicit schemes have the property of being unconditionally 
stable in the simpler linear applications. Nonlinear applications generally are not 
totally without stability bounds but can usually be characterized as being more 
robust than their explicit counterparts. 

Before attempting to solve Eqs. (6) and (7) with an implicit algorithm, several 
other issues must be considered. Since it is not practical to advance the particle ion 
component in time implicitly, the explicit particle-in-cell technique will impose a time 
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step constraint on the total algorithm. This constraint typically implies that the ion 
thermal and flow velocities as well as wave phenomena carried by the ions travel not 
more than a cell length in a time step [6]. Such restrictions serve as practical 
limitations for the time step size in accurate simulations. Consequently, even though 
an implicit electron-field algorithm is theoretically capable of handling arbitrarily 
small but finite densities (hence arbitrarily large signal velocities), there is no 
advantage to achieving this level of performance in nonvacuum regions considering 
the time step constraint imposed by the ions. Therefore, no penalty is incurred by 
imposing a minimum density “cutoff’ value-below which the cell is considered to be 
vacuum-to reduce the signal velocity magnitudes which the algorithm must handle. 
Practically, the cutoff value is chosen small enough to insure that all but 2 or 3% of 
the particles are included in “plasma” cells. Cutoff values greater than a few percent 
make the distinction between plasma and vacuum regions questionable. 

With the introduction of a density minimum in combination with the explicit ion 
advance, the need for an implicit electron-field algorithm may seem less compelling. 
Any advantage gained by integrating these equations implicitly in time is in principle 
restricted to time scales faster than typical ion flow and wave propagation times 
through a cell since this time scale must be resolved by the time step anyway. 
However, the more robust implicit method is much more tolerant of locally extreme 
fluctuations in these velocities than the corresponding explicit algorithm. More impor- 
tantly, the implicit procedure handles the disparity in signal velocities between 
adjacent plasma and vacuum cells without instability. The only distinction between a 
true vacuum region’s first appearance and a fluctuation “vacuum” is simply that the 
true region will persist while the fluctuation is likely to disappear after the next 
particle time step. In addition, the capability to handle the occurrence of a zero 
density or vacuum cell stochastically imbedded in the “finite density” plasma region 
without imposing a finite background density is also achieved. Again, the importance 
of this feature is apparent in that the propagation speed of electromagnetic 
phenomena across vacuum regions is infinite in this model. 

With the exception of Eqs. (9) the implicit time advance of the electron-field 
equations removes the need for separate treatments of plasma-vacuum regions and 
therefore the need for interface monitoring. Equations (6) and (7) automatically 
respond with the appropriate physics in regions of low or zero density. In a vacuum 
cell, Eq. (6) reduces to V2A/, = 0 and, with proper concern for the difference scheme, 
Eq. (7) is made to reduce to -V2B I0 = V x B,e^, = O-the physically correct vacuum 
equations. This response is a consequence of the approximation of infinite vacuum 
resistivity in which B is set to a large (v,,,,,, x 10”) value in any cell in which the 
density drops below the cutoff value. Thus, terms in Eqs. (6) and (7) containing q 
dominate other terms in the equations and automatically reduce to the desired limit. 
As a result, the B field advance can function properly with boundary conditions 
applied only on the boundaries of the simulation region. There are no restrictions on 
the position or number of plasma-vacuum interfaces. 

The total E field in finite density cells is now calculated from Eq. (1) using the 
newly updated B field and u,. The field calculations are completed by solving 
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V2E = 0 in the vacuum region [4] by a separate routine employing adaptive AD1 [7 ]. 
This routine is arranged so that the E field solution obtained from Eq. (1) in regions 
of finite density is preserved. In regions of low or zero density, the routine shifts 
automatically to a five-point vector Poisson algorithm. 

To conclude this section on the low density problem, the following comments 
should be noted. Even with large numbers of simulation particles, the possibility of a 
cell with small but finite density always exists due to the nature of PIC simulation. 
Such cells are inevitable if vacuum regions and their associated interfaces are allowed 
to move. The question is often raised concerning the correctness of not distinguishing 
true vacuum regions from stochastic “vacuum” cells within regions of finite density. 
Since something must be done to determine the fields in these cells, it is reassuring to 
see that the procedures discussed in this section could equally well be described as 
simply the “patching over” of the offending region by averaging the nearest neighbor 
field quantities with a five-point Poisson operator. 

NUMERICAL IMPLEMENTATION 

The previous sections describe the electron field equations for a zero-electron- 
inertia hybrid simulation scheme. The physics contained in these equations is not 
new; similar equations have formed the basis of numerous analytical and numerical 
models-typically one dimensional or with other simplifying assumptions. However, 
properly implemented in a two- or higher-dimensional simulation code, these 
equations can produce an algorithm which provides access to the nonlinear behavior 
of a wide variety of realistic plasma configurations. The key lies in producing an 
algorithm which provides flexibility, robustness, and relative ease in setting up new 
configurations. This larger task is what is now addressed. 

In the remainder of this section, it is assumed that the magnetic components B,, 
B,, and B, have just been used at time level n to push the ion simulation particle 
quantities p and ui to time level n + 1. Calling the electron-field routine to advance 
the field components and u, to the same time level begins by initiating the following 
sequence of operations. First, a,, is advanced in time by Eq. (9a) using the time levels 
given schematically by 

The next operation is the first half or r pass, in this case, of an AD1 time advance. 
The terms in Eq. (6) which contain spatial derivatives in the r directions (here 
denoted by R,,,,,) are advanced implicitly one helf time step using the &component 
of A and its z derivatives (denoted by Z,,,,,) as source terms. This procedure is 
represented schematically by 

n+1/2 A0 llt1 
dt,2 + Kerms(~er ,A ;+ I’*) = -& - Zterms(u;;, A”,). (lob) 
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Now the second half of the AD1 scheme, described here as the z pass, is made on 
Eq. (6) to obtain a temporary value of the 0-component of the vector potential A, at 
the time level it + 1. All temporary values are labeled with -. The result of the r pass 
equation (lob) provides the required source terms for the second half time step. This 
step is denoted by 

(1Oc) 

This temporary value of A, is now used to provide intermediate values for the r- and 
z-components of B (both components are here represented by 8) by taking the curl 

B = v x A&. Clod) 

The &component of u, is obtained by using Eq. (9b): 

Gee = f (jf+ ‘, l&+ ‘, A,). (I@) 

Now the r pass on the B, can be conducted with a similar schematic representation 
given by 

+ R terms (u nt1 Bi 
er 9 

B”,+ ‘12) = - - 
At/2 

Z terms (4 > B”,) + f(u^,e, & T,) (1 Of) 

followed by an application of Eq. (SC) to obtain u,;, 

U ,“;” = f@“+‘, u;;‘&+‘/~), (log) 

so that the z pass of the B, time advance can be completed: 

B” t 1/2 

‘+ ’ B;+‘) = -.f!--- - Rtetms(ue”; ‘, B;+ I”) + f(&,, 8, 7’,).( 10h) 
At/2 

Finally, the final z pass is made on A, with the time advanced u,,, for the convective 
term 

tI+1 At3 -++ @::‘,A 
At/2 terms 

(lOi) 

followed by a final updating of B,, B,, and u,@ given by 

B”+’ = V x A;+’ r.z 

and 

(loj) 

u Po=f@“+‘,~~~‘,A;+‘). (IOk) 
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The above sequence of operations constitutes a noniterative alternating direction 
implicit time advance of Eqs. (6) and (7) which is second order accurate in dt for B, 
and A 0 and therefore for B, and B, . This sequence of steps has been so chosen that it 
confirms as nearly as possible to the “conventional wisdom” of nonlinear AD1 [8]. 
First note that the updates of the electron r and z drift velocities are so arranged that 
an update occurs before its nonlinear implicit use. To update a nonlinear coefficient 
immediately before its explicit use would adversely effect stability. Second, for 
nonlinear variables such as u,* which do not occur as coefficients of the unknown, 
the variable update should be carried out only at such times that the numbers of r 
passes and z passes are equal. This is the reason for the creation in Eq. (10~) and use 
in Eqs. (10d) and (1Oe) of the temporary a,. To neglect operation (10~) and replace 
A, in the next two equations by A, ‘+i’* from (lob) increases the numerical diffusion 
significantly and appears to make the overall algorithm less robust. 

A smoothing of A, in all vacuum regions is carried out between steps (lOi) and 
(1Oj). This operation is performed by solving V’A le = 0 in these regions, again using 
adaptive ADI. Since A, has already been advanced in time, this step smooths some 
oscillations which develop due to the noniterative AD1 passes on V’A], = 0. 

The only fully advanced electron drift velocity component resulting from this 
algorithm is u,@. The other two components must not be fully advanced or the 
stability of the algorithm will suffer and numerical diffusion will be increased. Conse- 
quently, a fully updated set of electron drift velocities is calculated, but not stored. for 
use in the subsequent evaluation of Eq. (1) for the total E field. The sole use of the 
stored u, components is to facilitate the time advance of the magnetic field. The 
components of II, are, however, close enough to the fully advanced values to be 
entirely satisfactory for diagnostic purposes. 

It is also found that the operator combination 

(11) 

as found in Eq. (7), introduces numerically the equivalent of a term with a negative 
diffusion coefficient when the space terms are center differenced [9]. Such behavior 
has often been encountered in explicit fluid dynamic codes and is usually mitigated 
by using spatial difference approximations which themselves introduce overriding 
positive numerical diffusion. The need for such techniques has been demonstrated 
empirically by this implicit formulation as well. 

The method of tensor viscosity of Dukowicz and Ramshaw [lo] provides a 
solution to this problem which exhibits significantly less numerical diffusion than 
earlier techniques. Briefly, the method as applied to the numerical solution of the 
continuity equation allows the center differencing of spatial terms coupled with a 
better temporal finite difference approximation of a/at. Since Eq. (11) does not have 
all the terms of the cylindrical continuity operator, a new temporal difference 
operator for use in Eq. (7) was derived which has the form 
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r3B B”+‘--Bn 3 
at’ At 

- g T,., ‘; + T,, z 
I 

T,,F+ Tzza$ , 
1 

(12) 

where 

T=a$u,u,. (13) 

The * denotes a time level that may be either n or n + 1 depending upon whether the 
application is in an r or a z pass of the solution process. The a is a constant greater 
than or equal to unity which provides extra numerical smoothing should it be 
required. The additional smoothing is still less than that of donor cell techniques 
19, lo] until a approaches the electron flow Courant number which can easily be two 
or three orders of magnitude greater than the corresponding ion Courant number. For 
the examples presented later, a is set at 100. 

All spatial finite difference operators are basically the standard second order 
forms, and second order derivatives utilize conservative, compact forms. All quan- 
tities are assumed to reside at cell centers, which necessitates the definition of ghost 
cells around the simulation region but greatly eases the problems associated with the 
application of arbitrary combinations of Dirichlet and Neumann boundary 
conditions. A standard tridiagonal solver provides the required solutions for the r and 
z passes of Eqs. (IO). 

TESTS AND APPLICATIONS 

To adequately test this model it is necessary to include those plasma configurations 
which are strongly inhomogeneous (i.e., include vacuum regions) in addition to the 
usual comparisons with linear theory. Presented here are the results of some tests 
designed to verify the electron-field algorithm performance in different simplified 
regimes as well as to demonstrate its more general multidimensional performance. 
The code ZEMER has been developed to test the algorithm presented in this paper 
and is used for these tests and applications. This codes makes use of particle moving 
routines which are direct descendents of the irreversible second order schemes 
described by Nielson and Lewis [5]. Sgro [4] has adapted this algorithm to the r-z 
geometry required here. The precise form of the algorithm is immaterial to the 
method presented in the preceding sections, which assumes only that there is an 
algorithm which advances the ion component explicitly in time and provides p, ui, 
and Ti at t = (n + 1)At given the ion representation as well as E and B at time level 
t=nAt. 
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The first test case is a one-dimensional e-pinch implosion which provides a 
verification of the time integration of the A, equation (6) in a strongly 
inhomogeneous, nonlinear environment. Complications due to the A,, B, coupling 
are largely absent since B, is negligibly small. (B, would be identically zero were it 
not for random fluctuations in the ion source terms.) Since analytic methods cannot 
describe this implosion, the standard of comparison is a similar implosion run on the 
well-tested one-dimensional hybrid code of Sgro and Nielson [ 1 l] which contains 
similar physics. The algorithms in the two-dimensional code described here are 
substantially different from those used for the one-dimensional results, so that if the 
two produce similar physics, a high degree of confidence in the A, integration is 
warranted. 

The test problem presented here consists of a homogeneous 1-eV ion plasma with 
density 3 x 1014 which is subjected to a 5-kG external B, field at time equal to zero. 
The electron temperature is also 1 eV and is not allowed to change in time. The ion 
gyrofrequency in the external field is 2.4 x 10’ rad/sec; the Alfven velocity at cutoff 
density in the external field is 2.4 x lo* cm/set. The numerical parameters are: 40 
uniform cells in radius 0 < r < 10 cm, 20 uniform cells in 0 ( z < 10 cm, At is 2 rsec 
and the total number of particles is 10,000. Shown in Fig. la is the resulting vi versus 
Y phase space after 200 vsec from the one-dimensional code. Figure lb gives the 

: I I 

0 25 
a 50 7.5 100 

r 

I I I 

b” 25 “: ‘= 100 

FIG. 1. The ion phase space that results after 200 nsec. The t=O configuration consisted of a 
homogeneous 1-eV deuterium plasma with a density of 3 x lOI which is subjected to an external B1 
implosion field of 5 kG. (a) Result obtained using the one-dimensional algorithm of Sgro and Nielson 
(courtesy of A. G. Sgro). (b) Result obtained using the two-dimensional algorithm described in the text. 

581 m/3-9 
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corresponding plot from the two-dimensional code. The implosion velocities .agree to 
within 6%. The addition of various averaging techniques can be employed when 
evaluating terms in Eqs. (10) which easily provide an order of magnitude 
improvement in agreement, using the position of the vacuum-plasma interface as the 
only criterion. With such additions the qualitative agreement of other features that is 
evident in Fig. I is easily degraded. The results presented in this section were 
obtained with the straightforward application of the ideas presented in the section on 
numerical implementation. Agreement improves when the number of cells in the 
radial direction is increased. 

The second test provides a similar test of the B, equation (7) without interference 
from the A, dependency. This is accomplished by considering a Z-pinch implosion 
which is initiated by imposing a finite B, (again 5 kG) at r = rmax. This boundary 
condition numerically induces a z current in the plasma which results in the subse- 
quent implosion. A, in this case would be exactly zero were it not again for random 
noise in the ion source terms. The Z-pinch implosion test is made with numerical 
parameters similar to those of the first test but with B, (r = 10 cm) = 5 kG and B2 
(r = 10 cm.) = 0. Th e ion gyrofrequency in the 200-qsec field just outside the plasma 
is roughly 4.8 X 10’ rad/sec; the Alfvtn velocity at cutoff density in the same 200- 
vsec field is 4.9 X IO8 cm/set. The comparison is again made with the vi versus r 

@CE] E] 
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FIG. 2. Result of an implosion driven by a 5-kG external B, field with other conditions remaining 
similar to those described in Fig. 1. (a) Result obtained using the one-dimensional Sgro-Nielson 
algorithm (courtesy of A. G. Sgro). (b) Result obtained using the two-dimensional algorithm described 
in the text. 
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phase space plots obtained with the Sgro-Nielson code. The one-dimensional result in 
Fig. 2a and the two-dimensional result in Fig. 2b agree to within a few percent. 

The third test includes nontrivial two-dimensional effects and therefore full 
coupling between the A, and B, Eqs. (6) and (7). Starting with a homogeneous, 
anisotropic plasma immersed in strong B,, comparisons can be made with the linear 
theory for growth of both mirror and ion-cyclotron instabilities [ 121. The results 
presented here are from an ongoing study of nonlinear saturation levels on these 
modes by Sgro et al. [ 131. Such a comparison is made diffkult by several factors. 
Possibly the most significant issue is the fact that a cylindrical code is not well suited 
to the simulation of modes in an infinite homogeneous plasma. This is true for two 
reasons. First, the best-suited boundary conditions for infinite plasma simulations are 
periodic boundary conditions, which obviously cannot be applied in the radial 
direction. This case is particularly diffkult in that obliquely propagating modes are 
expected. Second, with uniform cell spacing in the radius, more plasma mass is 
present in the outermost cells than in the inner cells by a factor of r. Consequently 
the simulation fluctuation level (a measure of which is given by the number of 
simulation particles per cell) is much higher near the axis than on the 
outside-assuming simulation particles of equal mass. 

c O 50 100 I50 200 

T(?s) 

FIG. 3. (a-c) Time history of the turbulent components of the magnetic field. This magnetic field 
behavior results from an initial plasma configuration which is immersed in a strong (20 kG) 
homogeneous external B, and is highly anisotropic (T,JT,, = 20). This configuration is unstable to both 
the mirror instability which is responsible for the turbulent B, behavior and the ion-cyclotron instability 
which appears in the turbulent B, and B, behavior. 
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With these caveats, the preliminary results of a simulation with the following 
parameters are presented. A homogeneous density of 3 X 1016 with a TiZ of 1 keV and 
Ti_ITi, = 20 is represented by 80,000 thermally loaded particles. A 20-kG external 
Bz is imposed on this system. The ion gyrofrequency in the bias field is 
9.6 x 10’ rad/sec; the Alfvln velocity at cutoff density in this field is 
9.8 x 10’ cm/set. The spatial representation contains 40 x 40 equally spaced grid 
points in the radial and axial directions which encompass 0 to 10 cm in radius and 0 
to 4 cm along the axis. The time step used in these runs was 0.5 ysec. Figure 3a 
shows the resulting behavior of the turbulent B, field as a function of time. From 
linear theory it is expected that the component of the turbulent B field parallel to the 
zeroth order field should grow at the mirror growth rate. The theoretical growth rate 
of the turbulent B, is 3.2 x 10’ and the numerically observed growth rate is 
1.6 X 10’. The components of B perpendicular to the applied field, shown in Figs. 3b 
and c, exhibited growth at the ion-cyclotron growth rate, which according to linear 
theory is 4 x 10’. The corresponding value obtained from the simulation is 
1.97 X 10’. This discrepancy may be due to the fact that there several unstable modes 
which can share in the free energy available to drive instabilities. There are at least 
three modes allowed by the boundary conditions which have comparable linear 
growth rates in this case. Careful selection of the box length in the axial (periodic) 
direction so that only one of the allowed modes has an appreciable linear growth rate 
for the mirror instability has yielded almost exact agreement with theory. Unfor- 
tunately, such selection of unstable wavelengths is nearly impossible for both mirror 
and ion-cyclotron instabilities simultaneously. Considering the earlier discussion of 
the limitations of a cylindrical (T-Z) code for this simulation, the agreement is quite 
acceptable. It should be pointed out that this t = 0 homogeneous plasma represen- 
tation has 11 vacuum cells due to fluctuations. This number varies only slightly 
during the course of the run but, of course, the locations of these cells exhibit rapid 
stochastic movement. 

The best demonstration of the plasma-vacuum capabilities of this model is 
simulations of the setup phase of a bumpy o-pinch shown in Figs. 4a, b, and c. An 
initially homogeneous Maxwellian ion distribution is imploded by an external Bz field 
of the form 

kG. 

For this run there were 10,000 ions in a 40 x 40 mesh with dimensions 0 < r < 10 cm 
and 0 < z < 100 cm and At = 2 gsec. The number of t = 0 vacuum cells is 23. The 
ion gyrofrequency in the largest external field is 3.7 x 10’ rad/sec; the Alfven 
velocity at cutoff density in this field is 3.7 x lo8 cm/set. A variety of ion 
phenomena is evident. In Fig. 4a, the reflected ion beam is about to reach r = 0 at 
approximately z = 7.5 cm. The reflected ion beam is beginning to recompress the 
external field in Fig. 4b. From the several “free” particles, it is evident that from this 
time forward, the code must respond to an even more complicated intermixing of 
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FIG. 4. (a-c) Ion positions in r-z space which result from an initially homogeneous I-eV plasma 
being subjected to a bumpy e-pinch implosion field given by Bz = 5(1 + 0.5 sin(2nz/l)) kG. Those ions 
which actually bounce off of the external field are nearing the axis at z = 7.5 cm in (a). In (b), those 
same ions have reflected from the symmetry plane at r = 0 and are starting to recompress the external 
field. Note the isolated particles. (c) Ion positions at a later time at which the density configuration is 
still highly turbulent and far from equilibrium. 
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FIG. h-Continued. 

plasma and vacuum regions. Figure 4c shows a typical example of such intermixing 
at a later time. This configuration, however, is still far from equilibrium. 

CONCLUSIONS 

In this paper an appropriate combination of the electron momentum equation in 
the zero inertia limit and Maxwell’s equations in the radiation-free or Darwin limit 
has been developed which is suitable for numerical integration in a hybrid simulation 
code. Next, a method for numerically integrating this combination in concert with the 
time integration of the ion component is presented. The significant feature of this 
algorithm is that it provides a practical technique for dealing with the large signal 
velocities resulting from low density fluctuations that always occur with particle-in- 
cell techniques. As a result of this capability, it is also possible to correctly treat true 
vacuum regions-a capability which permits a wide variety of macroscopic 
applications for this method. 
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